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Abstract. We study a four-level double-Λ atomic ensemble interacting with two time-dependent signal
fields and two stationary control fields. Though, in each Λ channel, a pair of signal and control fields couple
resonantly with the two lower levels of atoms, the occurrences of electromagnetically induced transparency
(EIT) is affected by the coherence of the four fields. In the discussion of atomic susceptibilities, we show
that the quantum coherence between the two lower levels can be either formed or released according to
the phase matching of the four fields. We analyze the propagation equation of the two signal fields, and
find two characteristic solutions: the stationary transmission wave and the transient decay wave. The
former corresponds to a correlated EIT effect in which two signal pulses are shape-matched. The latter
is an opposite effect to the correlated EIT in which two pulses quench simultaneously, thus named as
the correlated two-signal absorption (CTSA). We propose the CTSA condition in correspondence with the
EIT condition. The numerical simulation shows that the double-Λ configuration is capable of manipulating
synchronous optical signals and thus provides multiplicity and versatility in quantum information process.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light; electro-
magnetically induced transparency and absorption – 42.50.Hz Strong-field excitation of optical transitions
in quantum systems; multiphoton processes; dynamic Stark shift – 42.65.-k Nonlinear optics

1 Introduction

Electromagnetically induced transparency (EIT) has
drawn much attention in recent years. The EIT system
consists of atoms with a three-level Λ configuration, in-
teracting with both a signal (or probe) and a control
(or driving) field [1]. Since quantum coherence occurs in
the EIT interaction, the signal or quantum state can be
transferred between the atoms and the field [2–9]. The
scheme is the basis of quantum memory, which is one of
the key devices in quantum information technique. The
EIT effect can also occur in a four-level double-Λ config-
uration interacting with two couples of signal and con-
trol fields [10–21]. References [10–12] show that, in the
double-Λ configuration, two shape-matched probe pulses
interacting with one Λ channel can losslessly propagate
while two identical strong pulses drive the other Λ chan-
nel. Theoretical analysis pointed out that the EIT effect
in the double-Λ configuration requires a Rabi-frequency
matching of four fields, and it has been demonstrated in
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experiments [11,13]. However, the ultraslow propagation
and the storage mechanism of optical pulse in the stan-
dard EIT interaction can also be applied to the double-Λ
configuration, where two probe pulses can be stored and
released simultaneously [16–21].

In a double-Λ configuration, the two Λ subsystems
share a common dark state so that the quantum interfer-
ence exists not only in each Λ channel, but also between
the two Λ channels. This feature renders the four-level
scheme flexible and versatile in practical applications. In
this paper, we study the atomic susceptibilities, the prop-
agation solutions and the manipulation of shape-matched
signals in a double-Λ atomic system. We formulate the
atomic susceptibilities, and find that the quantum co-
herence of the two lower levels is related to the phase
matching of the four fields. In analytical solution of the
propagation equation, the two characteristic solutions,
the stationary transmission wave and the transient de-
cay wave, are obtained. The former corresponds to the
correlated EIT effect in which the two pulses propagate
synchronously. The latter reflects an opposite effect to
the EIT, the correlated two-signal absorption (CTSA), in
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which the two pulses decay and quench simultaneously.
The phase matching of the four fields dominates the two
characteristic solutions. In the EIT case, however, the
two transmitted signals are synchronously modulated in
the quantum correlation between the two Λ channels. In
the double-Λ configuration, the dark state polariton-wave,
consisting of both the two signal fields and the atomic co-
herence of two lower levels, propagates losslessly [17,19].
Therefore, by adiabatically changing the two control fields,
the signals can be transferred not only between the fields
and the atomic medium but also between the two fields.
Our numerical simulations show a variety of schemes for
manipulating synchronous optical signals, such as signal
copy (generation of optical twin signals), signal amplifi-
cation, and signal transfer among the two fields and the
atomic medium.

2 Model and equations of motion

We consider a model consisting of atoms with a double-Λ
configuration interacting with four laser fields, as depicted
in Figure 1, where Ωu and ωu (u = 1s, 2s, 1c, 2c) are des-
ignated as the Rabi frequency and the carrier frequency
of the field, respectively. Here we assume two detuning
schemes. In detuning scheme I shown in Figure 1a, the
two weak signal fields Ω1s and Ω2s couple the atomic
transitions |b〉 − |a〉 and |b〉 − |d〉, respectively, with the
same detuning ∆ = ωab − ω1s = ωdb − ω2s, while the
two strong control fields Ω1c and Ω2c are resonant with
the transitions |c〉 − |a〉 and |c〉 − |d〉 (i.e. ω1c = ωac and
ω2c = ωdc), respectively, where ωab, ωac, ωdb, and ωdc

stand for the atomic transition frequencies. In detuning
scheme II shown in Figure 1b, a pair of fields in one Λ
channel,Ω1s and Ω1c, are resonant with the corresponding
atomic transitions (i.e. ω1s = ωab and ω1c = ωac), while
the pair of fields in the other Λ channel, Ω2s and Ω2c, are
detuned from the atomic transitions with the same detun-
ing ∆ = ωdb − ω2s = ωdc − ω2c. Accordingly, the Raman
transitions occur in both Λ channels. However, the dipole
transitions |b〉 − |c〉 and |a〉 − |d〉 are forbidden.

The Hamiltonian of the system is H = H0 + HI , in
which the free Hamiltonians for the two detuning schemes
are defined as

H0 = �

N∑

j=1

[(ωa −∆) |aj〉 〈aj | + (ωd −∆) |dj〉 〈dj |

+(ωc−∆) |cj〉 〈cj|+ωb |bj〉 〈bj |], for detuning scheme I,
(1a)

H0 = �

N∑

j=1

[ωa |aj〉 〈aj| + (ωd −∆) |dj〉 〈dj |

+ωc |cj〉 〈cj |+ωb |bj〉 〈bj|], for detuning scheme II,
(1b)

Fig. 1. Four-level Double-Λ atomic system; (a) detuning
scheme I and (b) detuning scheme II.

where N is the total number of atoms. In the interaction
picture, the interaction Hamiltonian can be written as

HI = H∆ − �

2

N∑

j=1

{Ω1s |aj〉 〈bj| exp [ik1szj ]

+Ω2s |dj〉 〈bj| exp [ik2szj ]
+Ω1c |aj〉 〈cj| exp [ik1czj]
+Ω2c |dj〉 〈cj | exp [ik2czj ] +H.c.}, (2)

where zj is the position of the jth atom. The wavevectors
of the fields are ku = ωu/c (u = 1s, 2s, 1c, 2c), and the
relation k1c − k2c = k1s − k2s is valid for both detuning
schemes. H∆ is the term related to detuning,

H∆ = �∆

N∑

j=1

(|aj〉 〈aj | + |dj〉 〈dj | + |cj〉 〈cj |) ,

for detuning scheme I, (3a)

H∆ = �∆

N∑

j=1

|dj〉 〈dj | , for detuning scheme II. (3b)

For detuning scheme I, we obtain the density-matrix equa-
tions for the single atom at the position z

∂ρca

∂t
= −1

2
(Γ a

b + Γ a
c )ρca

− i

2
[Ω∗

1sρcb +Ω∗
1c(ρcc − ρaa) −Ω∗

2cρda], (4a)

∂ρdb

∂t
= −

[
1
2
(Γ d

b + Γ d
c ) + i∆

]
ρdb

− i

2
[Ω1sρda +Ω2s(ρdd − ρbb) −Ω2cρcb], (4b)

∂ρaa

∂t
= −(Γ a

b + Γ a
c )ρaa

− i

2
[Ω∗

1sρab −Ω1sρba +Ω∗
1cρac −Ω1cρca], (4c)

∂ρbb

∂t
= Γ a

b ρaa + Γ d
b ρdd

− i

2
[Ω1sρba −Ω∗

1sρab +Ω2sρbd −Ω∗
2sρdb], (4d)
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∂ρcc

∂t
= Γ a

c ρaa + Γ d
c ρdd

− i

2
[Ω1cρca −Ω∗

1cρac +Ω2cρcd −Ω∗
2cρdc], (4e)

∂ρdd

∂t
= −(Γ d

b + Γ d
c )ρdd

− i

2
[Ω∗

2sρdb −Ω2sρbd −Ω2cρcd +Ω∗
2cρdc], (4f)

and

∂ρab

∂t
= −

[
1
2

(Γ a
b + Γ a

c ) + i∆

]
ρab

− i

2
{Ω1s(ρaa − ρbb) +Ω2sρad −Ω1cρcb}, (5a)

∂ρcb

∂t
= −i∆ρcb

− i

2
{Ω1sρca +Ω2sρcd −Ω∗

1cρab −Ω∗
2cρdb}, (5b)

∂ρcd

∂t
= −1

2
(
Γ d

b + Γ d
c

)
ρcd

− i

2
{Ω∗

2sρcb +Ω∗
2c(ρcc − ρdd) −Ω∗

1cρad}, (5c)

∂ρda

∂t
= −1

2
(
Γ a

b + Γ a
c + Γ d

b + Γ d
c

)
ρda

− i

2
{Ω∗

1sρdb −Ω2sρba +Ω∗
1cρdc −Ω2cρca}, (5d)

where Γ a
b and Γ a

c (Γ d
b and Γ d

c ) are the decay rates from
the upper level |a〉 (|d〉) to the two lower levels |b〉 and |c〉,
respectively. As for detuning scheme II, equations (5) are
replaced by

∂ρab

∂t
= −1

2
(Γ a

b + Γ a
c )ρab

− i

2
[Ω1s(ρaa − ρbb) +Ω2sρad −Ω1cρcb] , (6a)

∂ρcb

∂t
= − i

2
[Ω1sρca +Ω2sρcd −Ω∗

1cρab − Ω∗
2cρdb] , (6b)

∂ρcd

∂t
= −

[
1
2
(Γ d

b + Γ d
c ) − i∆

]
ρcd

− i

2
[Ω∗

2sρcb +Ω∗
2c(ρcc − ρdd) −Ω∗

1cρad] , (6c)

∂ρda

∂t
= −

[
1
2
(Γ a

b + Γ a
c + Γ d

b + Γ d
c ) + i∆

]
ρda

− i

2
[Ω∗

1sρdb −Ω2sρba +Ω∗
1cρdc −Ω2cρca] . (6d)

In the slowly varying envelope approximation [22,23], the
propagation equations of the two signal fields are writ-
ten as

c
∂Ω1s

∂z
+
∂Ω1s

∂t
=
i

2
g2
1Nρab, (7a)

c
∂Ω2s

∂z
+
∂Ω2s

∂t
=
i

2
g2
2Nρdb, (7b)

where c is the light velocity in vacuum, and g1 =
℘ba

√
2ω1s/(ε0V �), g2 = ℘bd

√
2ω2s/(ε0V �) are the cou-

pling coefficients. ℘ba and ℘bd are the dipole moments,

and V is the volume of the medium, and ε0, the vacuum
electric permittivity. In order to minimize the parameters
of the model, we assume balanced decay and coupling, i.e.
Γ a

b = Γ a
c = Γ d

b = Γ d
c = γ and g1 = g2 = g. However, the

two control fields are set to be plane-waves.

3 Atomic susceptibilities

We formulate the atomic susceptibilities for the two weak
signal fields. In the limit of strong control fields, most
atoms are populated at the ground state |b〉, that is ρbb ≈ 1
and ρaa ≈ ρcc ≈ ρdd ≈ 0. For detuning scheme I, we obtain
the stationary equations

(γ + i∆)ρab = (i/2)(Ω1s +Ω1cρcb), (8a)
(γ + i∆)ρdb = (i/2)(Ω2s +Ω2cρcb), (8b)

∆ρcb = (1/2)(Ω∗
1cρab +Ω∗

2cρdb). (8c)

The atomic coherence can be solved as

ρab =
[4(∆− iγ)∆− |Ω2c|2]Ω1s +Ω1cΩ

∗
2cΩ2s

2(∆− iγ)(4∆2 − |Ωc|2 − i4∆γ)
, (9a)

ρdb =
[4(∆− iγ)∆− |Ω1c|2]Ω2s +Ω∗

1cΩ2cΩ1s

2(∆− iγ)(4∆2 − |Ωc|2 − i4∆γ)
, (9b)

where the total intensity of the control fields is designated
by |Ωc|2 ≡ |Ω1c|2+|Ω2c|2. Thus the atomic susceptibilities
corresponding to the two signal fields are given by

χ1s =
2N |℘ba|2

�ε0V

ρab

Ω1s

=
N |℘ba|2

�ε0V

4(∆− iγ)∆− |Ω2c|2 +Ω1cΩ
∗
2cΩ2s/Ω1s

(∆− iγ)(4∆2 − |Ωc|2 − i4∆γ)
,

(10a)

χ2s =
2N |℘bd|2

�ε0V

ρdb

Ω2s

=
N |℘bd|2

�ε0V

4(∆− iγ)∆− |Ω1c|2 +Ω∗
1cΩ2cΩ1s/Ω2s

(∆− iγ)(4∆2 − |Ωc|2 − i4∆γ)
.

(10b)

The atomic susceptibilities above, relying on the four
fields, indicate the process of four-wave mixing. But when
the condition

Ω1s

Ω2s
=
Ω1c

Ω2c
(11)

is satisfied, equations (10) are reduced to

χ1s =
N |℘ba|2

�ε0V

∆

∆2 − |Ωc|2 /4 − iγ∆
, (12a)

χ2s =
N |℘bd|2

�ε0V

∆

∆2 − |Ωc|2 /4 − iγ∆
. (12b)

In the full resonance ∆ = 0, the two susceptibilities are
null and the medium becomes completely transparent to
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Fig. 2. Atomic susceptibilities as functions of the normal-
ized detuning ∆/γ for detuning scheme I. The parameters are
δ = 0, |Ω1c| /γ = 7 and |Ω1s|2 = |Ω2s|2. Solid, dotted and
dashed lines refer to the intensity ratios of the two control
fields |Ω2c|2 / |Ω1c|2 = 1, 4 and 0.25, respectively.

both signal fields. The results are the same as that for the
EIT effect in a three-level atomic system [1,23]. The coex-
istence of EIT for the two signal fields implies the correla-
tion between the two Λ channels. Therefore, equation (11)
is the condition of the correlated EIT effect occurring in
the double-Λ configuration. However, condition (11) indi-
cates a phase matching relation

δ ≡ arg[Ω1c] − arg[Ω2c] + arg[Ω2s] − arg[Ω1s] = 0. (13)

Figure 2 shows the atomic susceptibilities as functions
of the normalized detuning for detuning scheme I, where
the parameters δ = 0, |Ω1c/γ| = 7 and |Ω1s|2 = |Ω2s|2.
Similar to a three-level EIT system, the two main ab-
sorption peaks in the imaginary part are located at ∆ =
±(1/2) |Ωc| . For |Ω1c|2 = |Ω2c|2 (solid lines in Fig. 2) con-
dition (11) is satisfied, and the two susceptibilities χ1s and
χ2s are identical and null around ∆ = 0, which displays
the correlated EIT effect. Otherwise, the dips/peaks of the
imaginary susceptibilities at ∆ = 0 indicate the gain/loss
for the signal fields. For example, when |Ω2c|2 / |Ω1c|2 = 4
(dotted lines in Fig. 2), signal Ω2s gets a gain while signal
Ω1s gets a loss. In result, Ω2s increases and Ω1s decreases
until condition (11) is satisfied. Correspondingly, the real
susceptibility for field Ω2s (Ω1s) exhibits a normal (abnor-
mal) dispersion.

Now we propose an opposite effect to the correlated
EIT in the double-Λ configuration, named as the corre-
lated two-signal absorption (CTSA). When the four fields
satisfy the condition

Ω1s

Ω2s
= −Ω

∗
2c

Ω∗
1c

, (14)

equations (10) can be reduced to

χ1s =
N |℘ba|2

�ε0V

1
∆− iγ

, (15a)

χ2s =
N |℘bd|2

�ε0V

1
∆− iγ

, (15b)
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Fig. 3. Same as Figure 2 except δ = π.

which correspond to the susceptibilities of two two-level
subsystems. This implies the quantum coherence of the
two lower levels is completely released. We note that the
CTSA condition (14) denotes a phase matching parameter
δ = π.

Figure 3 shows the susceptibilities curves for the phase
matching δ = π, and other parameters are the same as
in Figure 2. Here we can see that the absorption peaks
appear at the resonance. For |Ω1c|2 = |Ω2c|2 (solid lines
in Fig. 3), the CTSA condition (14) is satisfied, and the
two susceptibilities χ1s and χ2s are identical to that of
two-level atom. Though the Raman transition exists in
each Λ channel, EIT disappears completely due to the
decoupling between the two Λ channels. However, when
the phase matching δ = π, but the CTSA condition is
not satisfied (both dotted and dashed lines in Fig. 3), the
absorption of both signal fields occurs, too.

Similarly, in detuning scheme II, the stationary equa-
tions are approximately written as

γρab = (i/2)(Ω1s +Ω1cρcb), (16a)
(γ + i∆)ρdb = (i/2)(Ω2s +Ω2cρcb), (16b)

0 = Ω∗
1cρab +Ω∗

2cρdb, (16c)

and the atomic susceptibilities are obtained to be

χ1s =
N |℘ba|2

�ε0V

|Ω2c|2 −Ω1cΩ
∗
2cΩ2s/Ω1s

∆ |Ω1c|2 − iγ |Ωc|2
, (17a)

χ2s =
N |℘bd|2

�ε0V

|Ω1c|2 −Ω∗
1cΩ2cΩ1s/Ω2s

∆ |Ω1c|2 − iγ |Ωc|2
. (17b)

We see again that equation (11) is the condition for the
correlated EIT effect under which the two susceptibilities
are null, χ1s ≡ χ2s ≡ 0, thus irrelevant to the detuning.
This is due to the fact that the Raman resonant transi-
tion exists in both Λ channels. However, when the CTSA
condition (14) is satisfied, equation (17) is written as

χ1s =
N |℘ba|2

�ε0V

1
∆ |Ω1c|2 / |Ωc|2 − iγ

, (18a)

χ2s =
N |℘bd|2

�ε0V

1
∆ |Ω1c|2 / |Ωc|2 − iγ

. (18b)
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Fig. 4. Atomic susceptibilities as functions of the normalized
detuning ∆/γ for detuning scheme II. The parameters are δ =
0 and |Ω1s|2 = |Ω2s|2. Solid, dotted and dashed lines refer to
the intensity ratios of the two control fields |Ω2c|2 / |Ω1c|2 = 1,
4 and 0.25, respectively.

Similar to equation (15), equation (18) reflects the sus-
ceptibilities of two-level subsystems. Though the detuning
exists in one Λ channel, it equally affects both suscepti-
bilities due to the correlation between two Λ channels.

For detuning scheme II, we plot the susceptibilities as
functions of the normalized detuning in Figures 4 and
5 for the phase matching δ = 0 and π, respectively,
where |Ω1s|2 = |Ω2s|2. The variation of the susceptibilities
around ∆ = 0 is similar to that of detuning scheme I (see
Figs. 2 and 3). In Figure 4, the solid lines show null suscep-
tibilities all over the detuning range for |Ω1c|2 = |Ω2c|2,
since the EIT condition (11) is satisfied.

To understand both the correlated EIT and CTSA ef-
fects, we consider the interaction Hamiltonian for a single
atom

HI = −�

2
(Ω1s |a〉 〈b| +Ω2s |d〉 〈b| +Ω1c |a〉 〈c|

+Ω2c |d〉 〈c| +H.c.), (18)

and formulate its eigenstates. Under condition (11), the
dark state for the null eigenvalue is given by

|D〉 =
Ω1c |b〉 −Ω1s |c〉√|Ω1c|2 + |Ω1s|2

=
Ω2c |b〉 −Ω2s |c〉√|Ω2c|2 + |Ω2s|2

. (19)

Since two Λ channels share a common dark state, the
EIT for the two signal fields are correlated. Contrarily, the
dark state is not the eigenstate of the system under condi-
tion (14). Instead, the four eigenstates of the Hamiltonian
are obtained as

|Ψ1,2〉 =
1√
2

(
Ω1s |a〉 +Ω2s |d〉√|Ω1s|2 + |Ω2s|2

± |b〉
)
,

for eigenvalues±
√
|Ω1s|2 + |Ω2s|2, (20a)

|Ψ3,4〉 =
1√
2

(
Ω1c |a〉 +Ω2c |d〉√|Ω1c|2 + |Ω2c|2

± |c〉
)
,

for eigenvalues±
√
|Ω1c|2 + |Ω2c|2. (20b)
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Fig. 5. Same as Figure 4 except δ = π.

In these states, there is no quantum coherence between
the two lower levels. With the atomic decay of the upper
levels taken into account, the eigenstates are unstable. In
the next section, we will see that condition (14) refers to
decay wave.

4 Analytical solutions of the propagation
equations of the signal fields

In the following, we focus on the resonant case (∆ = 0)
and the two schemes have no difference. Using the same
approximation as indicated above, we perform Fourier
transforms to the atomic variables and the two signal
fields, and obtain

(γ − iω)ρ̃ab(z, ω) = (i/2)[Ω̃1s(z, ω) +Ω1cρ̃cb(z, ω)],
(21a)

(γ − iω)ρ̃db(z, ω) = (i/2)[Ω̃2s(z, ω) +Ω2cρ̃cb(z, ω)],
(21b)

−ωρ̃cb(z, ω) = (1/2)[Ω∗
1cρ̃ab(z, ω) +Ω∗

2cρ̃db(z, ω)],
(21c)

c
∂Ω̃1s(z, ω)

∂z
− iωΩ̃1s(z, ω) =

i

2
g2Nρ̃ab(z, ω), (22a)

c
∂Ω̃2s(z, ω)

∂z
− iωΩ̃2s(z, ω) =

i

2
g2Nρ̃db(z, ω), (22b)

where Ω̃1s(z, ω), Ω̃2s(z, ω) and ρ̃(z, ω) are the Fourier
transforms of Ω1s(z, t), Ω2s(z, t) and ρ(z, t), respectively.
Eliminating the atomic variables, we arrive at

∂Ω̃1s

∂z
= i

[
ω

c
− f

|Ω2c|2 − 4(ω + iγ)ω
(ω + iγ)(|Ωc|2 − 4ω2 − 4iγω)

]
Ω̃1s

+if
Ω∗

2cΩ1c

(ω + iγ)(|Ωc|2 − 4ω2 − 4iγω)
Ω̃2s, (23a)

∂Ω̃2s

∂z
= i

[
ω

c
− f

|Ω1c|2 − 4(ω + iγ)ω
(ω + iγ)(|Ωc|2 − 4ω2 − 4iγω)

]
Ω̃2s

+if
Ω∗

1cΩ2c

(ω + iγ)(|Ωc|2 − 4ω2 − 4iγω)
Ω̃1s, (23b)
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where f = g2N/4c. Equations (23) can be solved as

Ω̃1s(z, ω) =
|Ω1c|2 Ω̃1s(0, ω) +Ω1cΩ

∗
2cΩ̃2s(0, ω)

|Ωc|2
eik+z

+
|Ω2c|2 Ω̃1s(0, ω) −Ω1cΩ

∗
2cΩ̃2s(0, ω)

|Ωc|2
eik−z,

(24a)

Ω̃2s(z, ω) =
Ω∗

1cΩ2cΩ̃1s(0, ω) + |Ω2c|2 Ω̃2s(0, ω)
|Ωc|2

eik+z

+
−Ω∗

1cΩ2cΩ̃1s(0, ω) + |Ω1c|2 Ω̃2s(0, ω)
|Ωc|2

eik−z ,

(24b)

where the two characteristic complex wavevectors are
given by

k+ =
ω

c
+

4fω

|Ωc|2 − 4(ω + iγ)ω
, (25a)

k− =
ω

c
− f

ω + iγ
. (25b)

Assuming the two signal fields have so slowly varying en-
velopes that ω � γ, we can expand equations (25) as

k+ = ω/V+ + O(ω2/γ2), (26a)
k− = i(f/γ) + ω/V− +O(ω2/γ2), (26b)

where the group velocities V± are defined as

V+ = Re
(
dω

dk+

)
=

|Ωc|2
|Ωc|2 + g2N

c, (27a)

V− = Re
(
dω

dk−

)
=

γ2

γ2 − g2N/4
c. (27b)

The expression of the group velocity V+ is the same as
that of the three-level EIT system.

We neglect the high order terms in the complex
wavevectors (26). The first term in wavevector k− intro-
duces the spatial decay of the signal fields. Consequently,
the propagation of the signal field consists of two parts: the
stationary waves Ω̃(sw)

is (z, ω) (i = 1, 2) (the first term in
equations (24)) and the decay waves Ω̃(dw)

is (z, ω) (i = 1, 2)
(the second term in equations (24)), corresponding to the
wavevectors k+ and k−, respectively. From equation (24)
we find that the stationary waves and the decay waves
obey the EIT and CTSA conditions

Ω̃
(sw)
1s (z, ω)

Ω̃
(sw)
2s (z, ω)

=
Ω1c

Ω2c
, (28a)

Ω̃
(dw)
1s (z, ω)

Ω̃
(dw)
2s (z, ω)

= −Ω
∗
2c

Ω∗
1c

, (28b)

respectively. If the initial signal fields Ω̃1s(0, ω) and
Ω̃2s(0, ω) satisfy the EIT condition (28a), the decay

waves do not exist and the two signal fields are com-
pletely transparent in the medium, that is, Ω̃1s(z, ω) =
Ω̃1s(0, ω) exp(ik+z) and Ω̃2s(z, ω) = Ω̃2s(0, ω) exp(ik+z).
However, if the initial signal fields Ω̃1s(0, ω) and Ω̃2s(0, ω)
satisfy the CTSA condition (28b), the stationary waves
do not occur and the solutions are Ω̃1s(z, ω) =
Ω̃1s(0, ω) exp(ik−z) and Ω̃2s(z, ω) = Ω̃2s(0, ω) exp(ik−z),
which decay and disappear in propagation.

Now we focus on the stationary waves and define the
amplification ratios for them

n1s ≡

∣∣∣Ω̃(sw)
1s (z, ω)

∣∣∣
2

∣∣∣Ω̃1s(0, ω)
∣∣∣
2 =

1 + ξµ0 + 2
√
ξµ0 cos(δ0)

(1 + ξ)2
, (29a)

n2s ≡

∣∣∣Ω̃(sw)
2s (z, ω)

∣∣∣
2

∣∣∣Ω̃2s(0, ω)
∣∣∣
2 =

ξ2 + ξ/µ0 + 2ξ
√
ξ/µ0 cos(δ0)

(1 + ξ)2
,

(29b)

where the intensity ratio between the two initial signals
and the intensity ratio between the two control fields are

designated by µ0 ≡
∣∣∣Ω̃2s(0, ω)

∣∣∣
2

/
∣∣∣Ω̃1s(0, ω)

∣∣∣
2

and ξ ≡
|Ω2c|2 / |Ω1c|2, respectively. The phase matching δ0 for the
initial fields is given by

δ0 ≡ arg[Ω1c]− arg[Ω2c] + arg[Ω̃2s(0, ω)]− arg[Ω̃1s(0, ω)].
(30)

In the cases of δ0 = 0 and π, equation (29) is reduced to

n1s =
(1 ± √

ξµ0)2

(1 + ξ)2
, (31a)

n2s =
(ξ ± √

ξ/µ0)
2

(1 + ξ)2
=

ξ

µ0

n1s, (31b)

where the plus and minus signs correspond to δ0 = 0 and
π, respectively.

Figure 6 shows the amplification ratios of the signal
fields as functions of µ0 and ξ. In Figures 6a and 6b, where
δ0 = 0, the thick solid lines, i.e. ξ = µ0, refer to the EIT
condition and divide the surfaces into the amplification
and attenuation parts. On the thick solid lines, however,
we obtain n1s = n2s = 1. Correspondingly, in Figures 6c
and 6d, where δ0 = π, the thick solid lines, i.e. ξµ0 = 1,
refer to the CTSA condition, and exhibit null signal fields
n1s = n2s = 0.

The most important feature in the double-Λ atomic
system is that the two stationary signal waves must satisfy
EIT condition (28a), and this results in the shape-matched
propagation of two signals.

5 Numerical simulation

We solve numerically a set of both the ordinary and partial
differential equations (4, 5) and (7) at the resonant case
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Fig. 6. Amplification ratios of the signal fields as functions of
µ0 and ξ, with the phase matching parameter δ0 = 0 and π
in (a, b) and (c, d), respectively. The thick solid lines in (a,
b) and (c, d) correspond to the EIT and CTSA conditions,
respectively.

∆ = 0. In the numerical simulation, we assume that all
the atoms are initially at the ground state |b〉 and the two
signal pulses are set to be the Gaussian type

Ωis(z, τ = 0) = Ωis exp[−(z/wi)2], (32)

where Ωis = Ωis/(g
√
N), z = zγ/c and τ = γt are

normalized variables and wi is the normalized length of
the Gaussian pulse. The two control fields are assumed
to be plane-waves with the normalized amplitudes Ωic =
Ωic/(g

√
N).

5.1 Set-up of shape-matched propagation

In Section 4, the analytical solution shows that there are
two characteristic waves, the stationary and decay wave,
satisfying the EIT condition (11) and the CTSA condi-
tion (14), respectively. The phase matching of the four
fields dominates the occurrence of EIT and CTSA effects.

Figure 7 shows the CTSA effect when the initial four
fields, Ω1s = 0.06, Ω2s = −0.05, Ω1c = 10, Ω2c = 12
(δ0 = π), satisfy the CTSA condition (14). The two signal
pulses quench simultaneously after τ = 2. In order to avoid
signal absorption, we take the initial phase matching δ0 =
0 in the following simulation.

The main feature of the double-Λ configuration is
the set-up of shape-matched propagation of two signal
beams. This feature comes from the stationary-wave con-
dition (28a) in the transmission: the modulation between
two signal fields should be shape-matched as long as the
ratio between the two control fields is constant. In Fig-
ure 8a, the two initial signal pulses have different shapes,
i.e. Ω1s = 0.1, w1 = 5 and Ω2s = 0.05, w2 = 10, and are
distant with ∆z = 3. At τ = 10 the two pulses become
shape-matched in propagation as shown in Figures 8b
and 8c, where the control fields satisfy Ω1c/Ω2c = 2 and
Ω1c/Ω2c = 1, respectively. Obviously, the amplitude ra-
tio of two shape-matched pulses is equal to the amplitude
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ratio of two control fields. In Figure 8c, the two pulses
become identical due to Ω1c/Ω2c = 1.

This feature can be further utilized in copying a sig-
nal from one beam to the other which may have different
carrier frequency and/or polarization. In Figure 9, when
one signal beam Ω1s(z, 0), described by the dotted line,
is injected into the medium, the twin signals are then
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generated with balanced control fields. However, the copy
brings about attenuation of the original signal. According
to equation (29), the maximal signal conversion efficiency
is 25% [20].

In Section 4 we have discussed the amplification of
input signal. In order to get perfect fidelity in signal am-
plification, we should input two shape-matched signals. If
two signals are initially identical, i.e. µ0 = 1, the ampli-
fication ratios n1s and n2s, according to equation (31),
reach the maximum 1.457 for ξ = 3 − 2

√
2 and 3 + 2

√
2,

respectively. Figure 10 shows the signal amplification of
one input pulse against the attenuation of the other.

5.2 Controllable shape-matched propagation and
transfer

In the double-Λ configuration, when the shape-matched
propagation is set up, the signal transfer can occur not
only between the fields and the atomic ensemble but also
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Fig. 11. Storing and retrieving process of two synchronous
pulses in the double-Λ configuration. (a) Synchronous varia-
tion of two control fields, Ω1c (solid line) and Ω2c (dotted line);

(b) and (c) propagation of two signal pulses
∣∣Ω1s

∣∣2 and
∣∣Ω2s

∣∣2,
respectively; (d) evolution of the atomic coherence |ρbc|2; (e)
propagation of the dark state polariton-wave |ψ|2. Peak values
of the two input pulses are Ω1s = 0.06 and Ω2s = 0.05, and
the maximum amplitudes of the two control fields, β1c = 12
and β2c = 10. In Figures 11–14, the coupling strength is
g
√
N/γ = 3.5.

between the two signal fields. In this system, the dark
state polariton is described by [17,19,26]

ψ = (Ω1s cosφ+Ω2s sinφ) cos θ − ρbc sin θ, (33)

where tan θ = g
√
N/ |Ωc| and tanφ = Ω2c/Ω1c. Obvi-

ously, the polariton-wave is the same as that in the three-
level configuration, if the signal superposition (Ω1s cosφ+
Ω2s sinφ) is considered as a whole. The polariton-wave ψ
propagates losslessly in the medium with a group velocity
V+ = |Ωc|2

|Ωc|2+g2N
c = c cos2 θ (see Eq. (27a)). Here θ gov-

erns the signal transfer between fields and atomic medium,
while φ governs the transfer between the two signal fields.

In Figure 11, we show the process of simultaneously
storing and retrieving two signal fields by fixing φ. Fig-
ure 11a exhibits the synchronous variation of the two con-
trol fields given by

Ωic(τ ) = βic{1 − 0.5 tanh[0.1(τ − 15)]
+ 0.5 tanh[0.1(τ − 125)]}, (i = 1, 2) (34)

where β1c = 12 and β2c = 10 are normalized amplitudes
of the two control beams. The two input pulses are set to
be shape-matched with Ω1s = 0.06 and Ω2s = 0.05, and
the EIT condition (11) is initially satisfied. As is indicated
above, the decay wave does not exist so that the input
signals enter the medium without decaying. Figures 11b
and 11c show that the two signal beams can be stored
and retrieved simultaneously. However, the two signals are
stored in the atomic coherence ρbc shown in Figure 11d,
and the polariton-wave ψ in Figure 11e mostly maintains
its magnitude in propagation.
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According to equation (33), the cooperative varia-
tion of the parameters θ and φ may create a variety of
schemes of signal transfer and storage, as shown in Fig-
ures 12–15. In Figure 12, the two control fields are iden-
tical (tanφ = 1) before the storage, and then the second
control field vanishes (tanφ = 0) after the storage. The
two identical signals written in the medium are trans-
ferred into one field in the reading stage, and hence the
intensity of the retrieved signal is approximately doubled.
Figure 13 exhibits an opposite process to Figure 12, and
the twin signals are generated after the storage. However,
in Figure 14, we show the signal transfer from one field
to the other after the storage by adiabatically changing
the two control fields. The signal conversion efficiency is
nearly 100%. The signal transfer can also occur between
the two signal fields without participation of atomic stor-
age. In Figure 15, when the control field Ω1c is constant
and the control field Ω2c varies similar to equation (34),
the pulse transfers between the two signal fields. This ef-
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Fig. 14. Signal transfer from one field to the other after the
storage. Description is the same as in Figure 12.
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Fig. 15. Signal transfer between two fields without atomic
storage process. Description is the same as in Figure 12.

fect is particularly interesting since, in the evolution θ ∼= 0,
the atomic coherence of the two lower levels is not in-
volved. This means that, in the double-Λ configuration,
the EIT can build up the quantum coherence between two
fields. In all these schemes, the polariton-waves propagate
without significant decaying.

6 Conclusion

In summary, we study in detail the atomic susceptibilities
in the double-Λ configuration related to the phase match-
ing of the four fields. Though quantum coherence occurs
in each Λ channel, the EIT effect is also affected by the
coherence between the two Λ channels. The phase match-
ing of the four fields, δ = 0 and δ = π, dominates the
constructive and destructive coherence, respectively. The
former corresponds to a correlated EIT effect, in which two
transmitted signal beams are shape-matched. In the lat-
ter case, however, the EIT coherence is released and the
atomic susceptibilities behave as two two-level systems.
The analytical results show that the general solution of
the propagation equations consists of two characteristic
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waves: the stationary and decay wave, associated with the
EIT and CTSA effect, respectively. However, the EIT and
CTSA conditions can be obtained by both the discussions
of the atomic susceptibilities and the analysis of the prop-
agation equations. The proportion of the input signals en-
tering the medium can be controlled according to these
conditions. In the numerical simulation, we show that in
the double-Λ configuration the signal transfer can occur
not only between the fields and the atoms but also between
the two fields. Moreover, the conversion efficiency between
the two signals can reach nearly 100%. Therefore, various
schemes of manipulating optical synchronous signals have
been shown and thus provide extensive application oppor-
tunities in quantum information technology.
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